Monday, February 2, 2026

Cybersecurity & Cloud Digest — 2026-02-02 23:28

```html

Curated Digest: Key Developments in Cybersecurity and Networking/Cloud

Weekly Recap: Proxy Botnet, Office Zero-Day, MongoDB Ransoms, AI Hijacks & New Threats

This week’s cybersecurity recap highlights various emerging threats, including a proxy botnet and a zero-day vulnerability affecting Microsoft Office. The ongoing battle between attackers and defenders underscores the need for vigilance and rapid adaptation to new exploit techniques.

Why it matters: Security professionals must stay informed about evolving threats to implement effective defenses and mitigate risks associated with these vulnerabilities.

Source

OpenClaw Bug Enables One-Click Remote Code Execution via Malicious Link

A critical vulnerability in OpenClaw allows remote code execution through a specially crafted link, posing significant risks to users. This flaw, identified as CVE-2026-25253, has been rated with a CVSS score of 8.8 and requires immediate attention from affected organizations.

Why it matters: Practitioners should prioritize patching this vulnerability to prevent potential exploitation, which could lead to severe security breaches and data loss.

Source

Microsoft Begins NTLM Phase-Out With Three-Stage Plan to Move Windows to Kerberos

Microsoft is initiating a phased approach to deprecate the NTLM authentication protocol in favor of the more secure Kerberos. This transition is part of a broader strategy to enhance security in Windows environments, addressing vulnerabilities associated with NTLM.

Why it matters: Network administrators should prepare for this transition, ensuring that systems are updated to support Kerberos and mitigate risks tied to legacy authentication methods.

Source

Google-acquired Cybersecurity Company Wiz Exposes 'Moltbook Hacking'

Wiz has reported a significant data breach involving the exposure of 35,000 email addresses linked to 'Moltbook hacking'. This incident raises concerns about the security measures in place for protecting sensitive information within cloud environments.

Why it matters: Security teams must evaluate their cloud security protocols and response strategies to prevent similar breaches and protect user data from unauthorized access.

Source

Microsoft: January Update Shutdown Bug Affects More Windows PCs

Microsoft has acknowledged that a shutdown bug introduced in its January update affects not only Windows 11 but also Windows 10 systems utilizing Virtual Secure Mode. This widespread issue highlights the potential for software updates to inadvertently disrupt system functionality.

Why it matters: IT teams should monitor for updates from Microsoft and be prepared to address any disruptions caused by software patches to maintain operational continuity.

Source

Quick Takeaways

  • Emerging threats require constant vigilance and adaptation from security teams.
  • Critical vulnerabilities like OpenClaw must be patched immediately to prevent exploitation.
  • Transitioning from NTLM to Kerberos is essential for enhancing security in Windows environments.
  • Data breaches highlight the need for robust cloud security measures.
  • Software updates can introduce new issues; monitoring is crucial for IT stability.

Sources

```

TEST (Published) — 2026-02-02 15:13:15

Published Test Post

This post was published by Python via Blogger API.

Timestamp: 2026-02-02 15:13:15

Wednesday, December 31, 2025

“AI node” in n8n

  1. No-code using n8n’s built‑in AI integrations (e.g., OpenAI Chat).
  2. Low-code using the generic HTTP Request node to call any AI API (OpenAI, Azure OpenAI, Anthropic, etc.).
  3. (Optional) Pro-code: build a custom Community Node in TypeScript that encapsulates your AI logic.

I’ll also include a ready-to-import workflow JSON and a TypeScript skeleton for a custom node, so you can go from idea to production quickly.


Why an “AI node” in n8n?

n8n is a workflow automation tool that lets you chain nodes (steps) together—triggers, transformations, API calls, and actions. An “AI node” typically:

  • Accepts input (prompt + context).
  • Calls an LLM API (e.g., OpenAI).
  • Returns structured output (text, JSON) for downstream nodes (routing, storage, notifications).

This becomes powerful when you automate: daily report summaries, ticket classification, code reviews, knowledge base Q\&A, or data extraction from logs—workflows your team can reuse.


Prerequisites

  • An n8n instance (self-hosted Docker or n8n Cloud).
  • An AI provider API key (e.g., OpenAI).
  • Basic familiarity with n8n nodes and credentials.

Security tip: Store your API keys in n8n Credentials (never hard-code keys in nodes or workflows). Use environment variables for self-hosted: N8N_ENCRYPTION_KEY, OPENAI_API_KEY, etc.


Approach A: Use the built-in OpenAI Chat node (No-code)

n8n ships with OpenAI nodes that are straightforward to configure.

Steps:

  1. Add Trigger: For demo, use Manual Trigger.
  2. Add Node: Search for OpenAIChat.
  3. Credentials: Create OpenAI credentials with your API key.
  4. Model: Select gpt-4o or gpt-4.1 (or any supported model in your setup).
  5. Messages:
    • System: “You are a professional assistant that responds concisely.”
    • User: Use an expression to pass dynamic input, e.g. {{$json.prompt}}.
  6. Input variable: Add a Set node before OpenAI to define prompt, or map from a webhook/email, etc.
  7. Output: The node returns data.choices[0].message.content (or response depending on node version). Pass it to subsequent nodes (e.g., email, Slack, DB insert).

Pros: Fast, simple, minimal configuration\ Cons: Tied to OpenAI node capabilities; less control than raw API


Approach B: Use HTTP Request node for any AI provider (Low-code)

This gives you fine-grained control and works with providers that may not have a dedicated n8n node.

Example with OpenAI Chat Completions API:

  1. Manual Trigger (start node)

  2. Set node → create fields:

    • prompt: “Summarize these NOC logs and flag potential network issues…”
    • context: Logs or ticket payload (string or JSON).
  3. HTTP Request node:

    • Method: POST
    • URL: https://api.openai.com/v1/chat/completions
    • Authentication: None (we’ll use headers)
    • Headers:
      • Authorization: Bearer {{$credentials.openAi.apiKey}}
      • Content-Type: application/json
    • Credentials: define a Custom API Key credential (or use OpenAI credentials if available)
    • Body (JSON):
      {
        "model": "gpt-4o",
        "temperature": 0.2,
        "messages": [
          { "role": "system", "content": "You are a network ops assistant. Be precise and concise." },
          { "role": "user", "content": "Prompt: {{$json.prompt}}\nContext: {{$json.context}}" }
        ]
      }
    • Response: JSON. The content path is typically: choices[0].message.content.
  4. (Optional) IF node: Check for errors or empty responses.

  5. (Optional) Code / Function node: Parse structured sections, extract JSON with regex, convert to n8n fields.

Pros: Works with any AI API (OpenAI, Azure OpenAI, Anthropic, local models behind an HTTP endpoint)\ Cons: You must handle headers, body schema, rate limits, and errors


Example: Ready-to-import workflow (JSON)

What this does:

  • Takes a prompt and context (could be logs or ticket text).
  • Calls the OpenAI Chat API via HTTP Request.
  • Extracts the assistant’s message and returns it.

Copy and import into n8n (top-right menu → Import from file).\ Replace the credential placeholder with your credential name or set the header inline with your key for testing.

{
  "name": "AI Chat via HTTP (OpenAI) - Example",
  "nodes": [
    {
      "parameters": {},
      "id": "ManualTrigger1",
      "name": "Manual Trigger",
      "type": "n8n-nodes-base.manualTrigger",
      "typeVersion": 1,
      "position": [260, 300]
    },
    {
      "parameters": {
        "keepOnlySet": true,
        "values": {
          "string": [
            {
              "name": "prompt",
              "value": "Summarize these NOC logs and list top 3 likely root causes with confidence scores."
            },
            {
              "name": "context",
              "value": "2025-12-31 06:18: Degraded throughput on WAN link BLR-Edge-03; BGP flap observed…"
            }
          ]
        }
      },
      "id": "SetPrompt2",
      "name": "Set Prompt & Context",
      "type": "n8n-nodes-base.set",
      "typeVersion": 2,
      "position": [460, 300]
    },
    {
      "parameters": {
        "authentication": "none",
        "url": "https://api.openai.com/v1/chat/completions",
        "options": {
          "responseFormat": "json"
        },
        "headerParametersUi": {
          "parameter": [
            {
              "name": "Authorization",
              "value": "Bearer {{ $env.OPENAIAPIKEY }}"
            },
            {
              "name": "Content-Type",
              "value": "application/json"
            }
          ]
        },
        "jsonParameters": true,
        "optionsUi": {},
        "queryParametersUi": {
          "parameter": []
        },
        "bodyParametersJson": "={\n  \"model\": \"gpt-4o\",\n  \"temperature\": 0.2,\n  \"messages\": [\n    { \"role\": \"system\", \"content\": \"You are a network ops assistant. Be precise and concise.\" },\n    { \"role\": \"user\", \"content\": \"Prompt: {{$json.prompt}}\nContext: {{$json.context}}\" }\n  ]\n}"
      },
      "id": "HTTPRequest3",
      "name": "OpenAI Chat API",
      "type": "n8n-nodes-base.httpRequest",
      "typeVersion": 4,
      "position": [700, 300]
    },
    {
      "parameters": {
        "functionCode": "const res = items[0].json;\ntry {\n  const content = res.choices?.[0]?.message?.content ?? '';\n  return [{ json: { ai_output: content } }];\n} catch (e) {\n  return [{ json: { error: e.message || String(e), raw: res } }];\n}"
      },
      "id": "Function4",
      "name": "Extract AI Output",
      "type": "n8n-nodes-base.function",
      "typeVersion": 1,
      "position": [940, 300]
    }
  ],
  "connections": {
    "Manual Trigger": { "main": [ [ { "node": "Set Prompt & Context", "type": "main", "index": 0 } ] ] },
    "Set Prompt & Context": { "main": [ [ { "node": "OpenAI Chat API", "type": "main", "index": 0 } ] ] },
    "OpenAI Chat API": { "main": [ [ { "node": "Extract AI Output", "type": "main", "index": 0 } ] ] }
  }
}

Notes:

  • For production, swap {{ $env.OPENAI_API_KEY }} with a proper n8n Credential reference (e.g., an OpenAI credential).
  • If you’re using Azure OpenAI, the URL and headers differ (endpoint per resource, api-key header, api-version query).

Approach C (Optional): Build a Custom Community Node (Pro‑code)

If you want a reusable, shareable “AI node” with curated parameters (model, temperature, prompt templates), create a Community Node in TypeScript.

High-level steps:

  1. Scaffold a community node repo (n8n expects a specific structure).
  2. Define credentials (API key).
  3. Implement a node description (parameters, UI).
  4. Implement the execute method to call the provider API and return normalized output.
  5. Build & publish; install in n8n via Community Nodes.

Minimal TypeScript skeleton (AIChat.node.ts):

import { IExecuteFunctions } from 'n8n-workflow';
import { INodeExecutionData, INodeType, INodeTypeDescription } from 'n8n-workflow';
import axios from 'axios';

export class AIChat implements INodeType {
  description: INodeTypeDescription = {
    displayName: 'AI Chat',
    name: 'aiChat',
    group: ['transform'],
    version: 1,
    description: 'Call an AI chat completion endpoint',
    defaults: { name: 'AI Chat' },
    inputs: ['main'],
    outputs: ['main'],
    credentials: [
      {
        name: 'openAiApi',
        required: true,
        testedBy: 'openAiApiTest',
      },
    ],
    properties: [
      {
        displayName: 'Model',
        name: 'model',
        type: 'string',
        default: 'gpt-4o',
      },
      {
        displayName: 'Temperature',
        name: 'temperature',
        type: 'number',
        typeOptions: { minValue: 0, maxValue: 1, step: 0.1 },
        default: 0.2,
      },
      {
        displayName: 'System Prompt',
        name: 'systemPrompt',
        type: 'string',
        default: 'You are a helpful assistant.',
      },
      {
        displayName: 'User Prompt',
        name: 'userPrompt',
        type: 'string',
        default: '={{$json.prompt}}',
      },
    ],
  };

  async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
    const items = this.getInputData();

    const model = this.getNodeParameter('model', 0) as string;
    const temperature = this.getNodeParameter('temperature', 0) as number;
    const systemPrompt = this.getNodeParameter('systemPrompt', 0) as string;
    const userPrompt = this.getNodeParameter('userPrompt', 0) as string;

    // Get credentials
    const credentials = await this.getCredentials('openAiApi');
    const apiKey = credentials?.apiKey as string;
    if (!apiKey) throw new Error('OpenAI API key missing');

    const results: INodeExecutionData[] = [];

    for (let i = 0; i < items.length; i++) {
      // Resolve expression for each item
      const up = this.getNodeParameter('userPrompt', i) as string;

      try {
        const resp = await axios.post(
          'https://api.openai.com/v1/chat/completions',
          {
            model,
            temperature,
            messages: [
              { role: 'system', content: systemPrompt },
              { role: 'user', content: up },
            ],
          },
          {
            headers: {
              'Authorization': Bearer </span><span attribution="{&quot;name&quot;:&quot;Copilot&quot;,&quot;oid&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;id&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;userInfo&quot;:{&quot;name&quot;:&quot;Copilot&quot;,&quot;oid&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;id&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;},&quot;timestamp&quot;:1767184200000,&quot;dataSource&quot;:0}">{{responseHTML}}lt;/span><span attribution="{&quot;name&quot;:&quot;Copilot&quot;,&quot;oid&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;id&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;userInfo&quot;:{&quot;name&quot;:&quot;Copilot&quot;,&quot;oid&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;id&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;},&quot;timestamp&quot;:1767184200000,&quot;dataSource&quot;:0}">{</span><span attribution="{&quot;name&quot;:&quot;Copilot&quot;,&quot;oid&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;id&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;userInfo&quot;:{&quot;name&quot;:&quot;Copilot&quot;,&quot;oid&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;id&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;},&quot;timestamp&quot;:1767184200000,&quot;dataSource&quot;:0}">apiKey</span><span attribution="{&quot;name&quot;:&quot;Copilot&quot;,&quot;oid&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;id&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;userInfo&quot;:{&quot;name&quot;:&quot;Copilot&quot;,&quot;oid&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;id&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;},&quot;timestamp&quot;:1767184200000,&quot;dataSource&quot;:0}">}</span><span attribution="{&quot;name&quot;:&quot;Copilot&quot;,&quot;oid&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;id&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;userInfo&quot;:{&quot;name&quot;:&quot;Copilot&quot;,&quot;oid&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;,&quot;id&quot;:&quot;E64C3D4F-5E12-4514-AD9B-893A6FAFD00C&quot;},&quot;timestamp&quot;:1767184200000,&quot;dataSource&quot;:0}">,
              'Content-Type': 'application/json',
            },
            timeout: 30000,
          },
        );

        const content = resp.data?.choices?.[0]?.message?.content ?? '';
        results.push({ json: { ai_output: content, raw: resp.data } });
      } catch (err: any) {
        results.push({ json: { error: err.message ?? String(err) } });
      }
    }

    return [results];
  }
}
``

Credential file (example): OpenAiApi.credentials.ts

import { ICredentialType, INodeProperties } from 'n8n-workflow';

export class OpenAiApi implements ICredentialType {
  name = 'openAiApi';
  displayName = 'OpenAI API';
  properties: INodeProperties[] = [
    {
      displayName: 'API Key',
      name: 'apiKey',
      type: 'string',
      default: '',
    },
  ];
}

This is a simplified illustration. In a real project:

  • Use node-fetch or built‑in HTTP helpers per n8n guidelines.
  • Add retries/backoff, error normalization, rate-limit handling.
  • Support Response Format = JSON with schema validation.
  • Consider Azure OpenAI variants (base URL, api-version).

Designing better prompts & outputs (for Ops/Network use-cases)

  • System message: Set clear role/constraints—e.g., “You are a network ops assistant. Prefer bullet points and short sections; return JSON keys: summary, root_causes, confidence.”
  • User/content: Feed structured context: timestamps, device names, severity, metrics (latency/packet loss), prior incidents.
  • Output schema: Ask for JSON and then parse/validate via Function node:
    // Example: Extract JSON block from AI output
    const text = $json.ai_output || '';
    const match = text.match(/\{[\s\S]*\}/);
    return [{ json: match ? JSON.parse(match[0]) : { raw: text } }];
  • Guardrails: Use temperature 0–0.3, add “If uncertain, say ‘insufficient data’” to reduce hallucinations.